
www.manaraa.com

Pip: Detecting the Unexpected in Distributed Systems

Patrick Reynolds∗, Charles Killian†, Janet L. Wiener‡,
Jeffrey C. Mogul‡, Mehul A. Shah‡, and Amin Vahdat†

∗ Duke University † UC San Diego ‡ HP Labs, Palo Alto

Abstract
Bugs in distributed systems are often hard to find.

Many bugs reflect discrepancies between a system’s be-
havior and the programmer’s assumptions about that be-
havior. We present Pip1, an infrastructure for comparing
actual behavior and expected behavior to expose struc-
tural errors and performance problems in distributed sys-
tems. Pip allows programmers to express, in a declara-
tive language, expectations about the system’s communi-
cations structure, timing, and resource consumption. Pip
includes system instrumentation and annotation tools to
log actual system behavior, and visualization and query
tools for exploring expected and unexpected behavior2.
Pip allows a developer to quickly understand and debug
both familiar and unfamiliar systems.

We applied Pip to several applications, including
FAB, SplitStream, Bullet, and RanSub. We generated
most of the instrumentation for all four applications au-
tomatically. We found the needed expectations easy to
write, starting in each case with automatically generated
expectations. Pip found unexpected behavior in each ap-
plication, and helped to isolate the causes of poor perfor-
mance and incorrect behavior.

1 Introduction
Distributed systems exhibit more complex behavior

than applications running on a single node. For instance,
a single logical operation may touch dozens of nodes
and send hundreds of messages. Distributed behavior
is also more varied, because the placement and order of
events can differ from one operation to the next. Bugs
in distributed systems are therefore hard to find, because
they may affect or depend on many nodes or specific se-
quences of behavior.

In this paper, we present Pip, a system for auto-
matically checking the behavior of a distributed sys-
tem against a programmer’s expectations about the sys-
tem. Pip classifies system behaviors as valid or invalid,
groups behaviors into sets that can be reasoned about,
and presents overall behavior in several forms suited to
discovering or verifying the correctness of system behav-
ior.

Bugs in distributed systems can affect structure, per-
formance, or both. A structural bug results in process-
ing or communication happening at the wrong place or
in the wrong order. A performance bug results in pro-
cessing taking too much or too little of any important
resource. For example, a request that takes too long may
indicate a bottleneck, while a request that finishes too
quickly may indicate truncated processing or some other
error. Pip supports expressing expectations about both
structure and performance and so can find a wide variety
of bugs.

We wrote Pip for three broad types of users:

• original developers, verifying or debugging their
own system;

• secondary developers, learning about an existing
system; and

• system maintainers, monitoring a system for
changes.

Our experience shows three major benefits of Pip.
First, expectations are a simple and flexible way to ex-
press system behavior. Second, automatically checking
expectations helps users find bugs that other approaches
would not find or would not find as easily. Finally, the
combination of expectations and visualization helps pro-
grammers explore and learn about unfamiliar systems.

1.1 Context
Programmers employ a variety of techniques for de-

bugging distributed systems. Pip complements existing
approaches, targeting different types of systems or differ-
ent types of bugs. Table 1 shows four approaches and the
types of systems or bugs for which they are most useful.

Traditional debuggers and profilers like gdb and gprof
are mature and powerful tools for low-level bugs. How-
ever, gdb applies to only one node at a time and generally
requires execution to be paused for examination. Gprof
produces results that can be aggregated offline but has
no support for tracing large-scale operations through the
network. It is more useful for tuning small blocks of code
than distributed algorithms and their emergent behavior.

More recent tools such as Project 5 [1], Magpie [2],
and Pinpoint [5] infer causal paths based on traces of net-

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 115

www.manaraa.com

Approach Scenario
gdb and gprof low-level bugs well illustrated by a single node; core dumps
black boxes systems with no source-code access, enough self-consistency for statistical inference
model checking small systems with difficult-to-reproduce bugs
printf bugs detectable with simple, localized log analyses

Table 1: Other techniques for debugging distributed systems.

work, application, or OS events. Project 5 merely re-
ports inferred behavior, while Magpie and Pinpoint clus-
ter similar behavior and suggest outliers as possible in-
dicators of bugs. Pip also uses causal paths, but instead
of relying on statistics and inference, Pip uses explicit
path identifiers and programmer-written expectations to
gather and check program behavior. We discuss the re-
lationship between Pip and other causal path debugging
systems further in Section 6.

Programmers may find some bugs using model check-
ing [10, 16]. Model checking is exhaustive, covering all
possible behaviors, while Pip and all the other techniques
mentioned above check only the behaviors exhibited in
actual runs of the system. However, model checking is
expensive and is practically limited to small systems and
short runs—often just tens of events. Model checking is
often applied to specifications, leaving a system like Pip
to check the correctness of the implementation. Finally,
unlike model checking, Pip can check performance char-
acteristics.

In practice, the dominant tool for debugging dis-
tributed systems has remained unchanged for over
twenty years: printf to log files. The programmer ana-
lyzes the resulting log files manually or with application-
specific validators written in a scripting or string-
processing language. In our experience, incautious ad-
dition of logging statements generates too many events,
effectively burying the few events that indicate or explain
actual bugs.

Debugging with log files is feasible when bugs are ap-
parent from a small number of nearby events. If a single
invariant is violated, a log file may reveal the violation
and a few events that preceded it. However, finding cor-
rectness or performance problems in a distributed system
of any scale is incredibly labor intensive. In our own ex-
perience, it can take days to track down seemingly sim-
ple errors. Further, scripts to check log files are brittle
because they do not separate the programmer’s expecta-
tions from the code that checks them, and they must be
written anew for each system and for each property being
checked.

1.2 Contributions and results
Pip makes the following contributions:

• An expectations language for writing concise,
declarative descriptions of the expected behavior
of large distributed systems. We present our lan-

guage design, along with design principles for han-
dling parallelism and for balancing over- and under-
constraint of system behavior.

• A set of tools for gathering events, checking behav-
ior, and visualizing valid and invalid behaviors.

• Tools to generate expectations automatically from
system traces. These expectations are often more
concise and readable than any other summary of
system behavior, and bugs can be obvious just from
reading them.

We applied Pip to several distributed systems, includ-
ing FAB [25], SplitStream [4], Bullet [13, 15], and Ran-
Sub [14]. Pip automatically generated most of the in-
strumentation for all four applications. We wrote ex-
pectations to uncover unexpected behavior, starting in
each case from automatically generated expectations.
Pip found unexpected behavior in each application and
helped to isolate the causes of poor performance and in-
correct behavior.

The rest of this paper is organized as follows. Sec-
tion 2 contains an overview of the Pip architecture and
tool chain. Sections 3 and 4 describe in detail the design
and implementation of our expectation language and an-
notation system, respectively. Section 5 describes our
results.

2 Architecture
Pip traces the behavior of a running application,

checks that behavior against programmer expectations,
and displays the resulting valid and invalid behavior in a
GUI using several different visualizations.

2.1 Behavior model
We define a model of application behavior for use

with Pip. This model does not cover every possible ap-
plication, but we found it natural for the systems we an-
alyzed.

The basic unit of application behavior in Pip is a path
instance. Path instances are often causal and are often in
response to an outside input such as a user request. A
path instance includes events on one or more hosts and
can include events that occur in parallel. In a distributed
file system, a path instance might be a block read, a write,
or a data migration. In a three-tier web service, path in-
stances might occur in response to user requests. Pip
allows the programmer to define paths in whatever way
is appropriate for the system being debugged.

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association116

www.manaraa.com

Figure 1: A sample causal path from a three-tier system.

Each path instance is an ordered series of times-
tamped events. The Pip model defines three types of
events: tasks, messages, and notices. A task is like a
profiled procedure call: an interval of processing with
a beginning and an end, and measurements of resources
consumed. Tasks may nest inside other tasks but oth-
erwise may not overlap other tasks on the same thread.
Tasks may include asynchronous events like timer call-
backs, which Pip normally associates with the path in-
stances that scheduled them. A message is any commu-
nication event between hosts or threads, whether a net-
work message, a lock, or a timer. Pip records messages
when they are sent and again when they are received. Fi-
nally, a notice is an opaque string—like a log message,
with a timestamp and a path identifier for context.

Figure 1 shows a sample path instance. Each dashed
horizontal line indicates one host, with time proceeding
to the right. The boxes are tasks, which run on a single
host from a start time to an end time. The diagonal ar-
rows are messages sent from one host to another. The
labels in quotation marks are notices, which occur at one
instant on a host.

Pip associates each recorded event with a thread. An
event-handling system that dispatches related events to
several different threads will be treated as having one
logical thread. Thus, two path instances that differ only
on which threads they are dispatched will appear to have
identical behavior.

Our choice of tasks, messages, and notices is well
suited to a wide range of distributed applications. Tasks
correspond to subroutines that do significant process-
ing. In an event-based system, tasks can correspond to
event-handling routines. Messages correspond to net-
work communication, locks, and timers. Notices capture
many other types of decisions or events an application
might wish to record.

2.2 Tool chain
Pip is a suite of programs that work together to gather,

check, and display the behavior of distributed systems.
Figure 2 shows the workflow for a programmer using
Pip. Each step is described in more detail below.

Annotated applications: Programs linked against
Pip’s annotation library generate events and resource

Figure 2: Pip workflow. Shaded ovals represent input that
must be at least partially written by the programmer.

measurements as they run. Pip logs these events into
trace files, one per kernel-level thread on each host. We
optimized the annotation library for efficiency and low
memory overhead; it performs no analysis while the ap-
plication is running.

We found that the required annotations are easiest to
add when communication, event handling, and logging
are handled by specialized components or by a supported
middleware library. Such concentration is common in
large-scale distributed systems. For applications linked
against a supported middleware library, a modified ver-
sion of the library can generate automatic annotations
for every network message, remote procedure call, and
network-event handler. Programmers can add more an-
notations to anything not annotated automatically.

A separate program gathers traces from each host and
reconciles them. Reconciliation includes pairing mes-
sage send and receive events, pairing task start and end
events, and performing a few sanity checks. Reconcili-
ation writes events to a database as a series of path in-
stances. Normally, reconciliation is run offline, parsing
log files from a short test run. However, Pip may also
be run in an online mode, adding paths to the database
and checking them as soon as they complete. Section 4
describes annotations and reconciliation in more detail.

Expectations: Programmers write an external descrip-
tion of expected program behavior. The expectations
take two forms: recognizers, which validate or invali-
date individual path instances, and aggregates, which as-
sert properties of sets of path instances. Pip can generate
initial recognizers automatically, based on recorded pro-
gram behavior. These generated recognizers serve as a
concise, readable description of actual program behav-
ior. Section 3 describes expectations in more detail.

Formally, a set of recognizers in Pip is a grammar,
defining valid and invalid sequences of events. In its cur-
rent form, Pip allows users to define non-deterministic
finite-state machines to check a regular grammar. We
chose to define a domain-specific language for defining

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 117

www.manaraa.com

these grammars because our language more closely mir-
rors how programmers reason about behavior in their ap-
plications. We believe this choice simplifies writing and
maintaining expectations.

Expectation checker: If the programmer provides any
expectations, Pip checks all traced behavior against
them. These checks can be done non-interactively, to
generate a list of violations, or they can be incorpo-
rated into the behavior explorer (below). Section 3.5 de-
scribes the implementation and performance of expecta-
tion checking.

The expectation violations that Pip uncovers do not
always indicate bugs in the system being tested. Some-
times, the errors are in the expectations or in the anno-
tations. Using Pip entails changing the application, the
expectations, and the annotations until no further unex-
pected behavior is found. Unexpected paths due to in-
correct expectations or annotations can loosely be called
false positives, though they are not due to any incorrect
inference by Pip.

Behavior explorer: Pip provides an interactive GUI
environment that displays causal structure, communica-
tion structure, sets of validated and invalidated paths, and
resource graphs for tasks or paths. Even without writ-
ing any expectations, programmers can visualize most
aspects of application behavior. Pip stores all of its paths
in an SQL database so that users can explore and check
application behavior in ways that Pip may not support di-
rectly. Space constraints prevent us from describing the
GUI or the database schema further here.

3 Expectations
Both checking and visualization in Pip start with ex-

pectations. Using Pip’s declarative expectations lan-
guage, programmers can describe their intentions about
a system’s structure, timing, and resource consumption.

3.1 Design considerations
Our goal is to provide a declarative, domain-specific

expectations language that is more expressive than
general-purpose languages, resulting in expectations that
are easier to write and maintain. Programmers using Pip
should be able to find more complex bugs with less ef-
fort than programmers checking behavior with scripts or
programs written in general-purpose languages.

With expressiveness in mind, we present three goals
for any expectations language:

1. Expectations written in the language must accept all
valid paths. One recognizer should be able to accept
a whole family of paths—e.g., all read operations in
a distributed file system or all CGI page loads in
a webserver—even if they vary slightly. In some
systems, particularly event-driven systems, the or-

der of events might vary from one path instance to
the next.

2. Expectations written in the language must reject
as many invalid paths as possible. The language
should allow the programmer to be as specific as
possible about task placement, event order, and
communication patterns, so that any deviations can
be categorized as unexpected behavior.

3. The language should make simple expectations easy
to express.

We designed Pip with several real systems in mind:
peer-to-peer systems, multicast protocols, distributed file
systems, and three-tier web servers, among others. Pip
also draws inspiration from two platforms for building
distributed systems: Mace3 [12] and SEDA [27]. The re-
sult is that Pip supports thread-oriented systems, event-
handling systems, and hybrids. We gave special consid-
eration to event-handling systems that dispatch events to
multiple threads in a pool, i.e., for multiprocessors or to
allow blocking code in event handlers.

3.2 Approaches to parallelism
The key difficulty in designing an expectations lan-

guage is expressing parallelism. Parallelism in dis-
tributed systems originates from three main sources:
hosts, threads, and event handlers. Processing happens in
parallel on different hosts or on different threads within
the same host, either with or without synchronization.
Event-based systems may exhibit additional parallelism
if events arrive in an unknown order.

Pip first reduces the parallelism apparent in an appli-
cation by dividing behavior into paths. Although a path
may or may not have internal parallelism, a person writ-
ing Pip expectations is shielded from the complexity of
matching complex interleavings of many paths at once.

Pip organizes the parallelism within a path into
threads. The threads primitive applies whether two
threads are on the same host or on different hosts. Pip’s
expectation language exposes threading by allowing pro-
grammers to write thread patterns, which recognize the
behavior of one or more threads in the same path in-
stance.

Even within a thread, application behavior can be
nondeterministic. Applications with multiple sources of
events (e.g., timers or network sockets) might not always
process events in the same order. Thus, Pip allows pro-
grammers to write futures, which are sequences of events
that happen at any time after their declaration.

One early design for Pip’s expectation language
treated all events on all hosts as a single, logical thread.
There were no thread patterns to match parallel behav-
ior. This paradigm worked well for distributed hash ta-
bles (DHTs) and three-tier systems, in which paths are
largely linear, with processing across threads or hosts se-

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association118

www.manaraa.com

// Read3Others is a validating recognizer
validator Read3Others {

// no voluntary context switches: never block
limit(VOL CS, 0);
// one Client, issues a read request to Coordinator
thread Client(*, 1) {

send(Coordinator) limit(SIZE, {=44b}); // exactly 44 bytes
recv(Coordinator); }

// one Coordinator, requests blocks from three Peers
thread Coordinator(*, 1) {

recv(Client) limit(SIZE, {=44b});
task(“fabrpc::Read”) {

repeat 3 { send(Peer); }
repeat 2 {

recv(Peer);
task(“quorumrpc::ReadReply”); }

future { // these statements match events now or later
recv(Peer);
task(“quorumrpc::ReadReply”); } }

send(Client); }
// exactly three Peers, respond to Coordinator
thread Peer(*, 3) {

recv(Coordinator);
task(“quorumrpc::ReadReq”) { send(Coordinator); } } }

// “assert” indicates an aggregate expectation
assert(average(REAL TIME, Read3Others) < 30ms);

Figure 3: FAB read protocol, expressed as an expectation.

rialized. It worked poorly, however, for multicast pro-
tocols, distributed file systems, and other systems where
a single path might be active on two hosts or threads at
the same time. We tried a split keyword to allow be-
havior to occur in parallel on multiple threads or hosts,
but it was awkward and could not describe systems with
varying degrees of parallelism. The current design, using
thread patterns and futures, can naturally express a wider
variety of distributed systems.

3.3 Expectation language description
Pip defines two types of expectations: recognizers and

aggregates. A recognizer is a description of structural
and performance behavior. Each recognizer classifies a
given path instance as matching, matching with perfor-
mance violations, or non-matching. Aggregates are as-
sertions about properties of sets of path instances. For
example, an aggregate might state that a specific number
of path instances must match a given recognizer, or that
the average or 95th percentile CPU time consumed by a
set of path instances must be below some threshold.

Figure 3 shows a recognizer and an aggregate expec-
tation describing common read events in FAB [25], a dis-
tributed block-storage system. The limit statements
are optional and are often omitted in real recognizers.
They are included here for illustration.

FAB read events have five threads: one client, one
I/O coordinator, and three peers storing replicas of the
requested block. Because FAB reads follow a quorum
protocol, the coordinator sends three read requests but
only needs two replies before it can return the block to

validator fab 109 {
thread t 7(*, 1) {

send(t 9); recv(t 9); }
thread t 9(*, 1) {

recv(t 7);
task(“fabrpc::Read”) {

send(t 1);
send(t 1);
send(t 1);
recv(t 1);
task(“quorumrpc::ReadReply”);
recv(t 1);
task(“quorumrpc::ReadReply”); }

send(t 7);
recv(t 1);
task(“quorumrpc::ReadReply”); }

thread t 1(*, 3) {
recv(t 9);
task(“quorumrpc::ReadReq”) { send(t 9); } } }

Figure 4: Automatically generated expectation for the FAB
read protocol, from which we derived the expectation in Fig-
ure 3.

the client. The final read reply may happen before or
after the coordinator sends the newly read block to the
client. Figure 4 shows a recognizer generated automat-
ically from a trace of FAB, from which we derived the
recognizer in Figure 3.

The recognizer in Figure 3 matches only a 2-of-3 quo-
rum, even though FAB can handle other degrees of repli-
cation. Recognizers for other quorum sizes differ only by
constants. Similarly, recognizers for other systems might
depend on deployment-specific parameters, such as the
number of hosts, network latencies, or the desired depth
of a multicast tree. In all cases, recognizers for different
sizes or speeds vary only by one or a few constants. Pip
could be extended to allow parameterized recognizers,
which would simplify the maintenance of expectations
for systems with multiple, different deployments.

Pip currently provides no easy way to constrain simi-
lar behavior. For example, if two loops must execute the
same number of times or if communication must go to
and from the same host, Pip provides no means to say so.
Variables would allow an expectations writer to define
one section of behavior in terms of a previously observed
section. Variables are also a natural way to implement
parameterized recognizers, as described above.

The following sections describe the syntax of recog-
nizers and aggregate expectations.

3.3.1 Recognizers

Each recognizer can be a validator, an invalidator, or a
building block for other expectations. A path instance is
considered valid behavior if it matches at least one val-
idator and no invalidators. Ideally, the validators in an
expectations file describe all expected behavior in a sys-
tem, so any unmatched path instances imply invalid be-

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 119

www.manaraa.com

havior. Invalidators may be used to indicate exceptions
to validators, or as a simple way to check for specific
bugs that the programmer knows about in advance.

Each recognizer can match either complete path in-
stances or fragments. A complete recognizer must de-
scribe all behavior in a path instance, while a fragment
recognizer can match any contiguous part of a path in-
stance. Fragment recognizers are often, but not always,
invalidators, recognizing short sequences of events that
invalidate an entire path. The validator/invalidator and
complete/fragment designations are orthogonal.

A recognizer matches path instances much the same
way a regular expression matches character strings. A
complete recognizer is similar to a regular expression
that is constrained to match entire strings. Pip’s rec-
ognizers define regular languages, and the expectation
checker approximates a finite state machine.

Each recognizer in Pip consists of expectation state-
ments. Each statement can be a literal, matching exactly
one event in a path instance; a variant, matching zero or
more events in a path instance; a future, matching a block
of events now or later; or a limit, constraining resource
consumption. What follows is a description of the expec-
tation statements used in Pip. Most of these statements
are illustrated in Figure 3.

Thread patterns: Path instances in Pip consist of one
or more threads or thread pools, depending on system
organization. There must be at least one thread per host
participating in the path. All complete (not fragment)
recognizers consist of thread patterns, each of which
matches threads. A whole path instance matches a rec-
ognizer if each thread matches a thread pattern. Pip’s
syntax for a thread pattern is:

thread(where, count) {statements}

Where is a hostname, or “*” to match any host. Count is
the number of threads allowed to match, or an allowable
range. Statements is a block of expectation statements.

Literal statements: Literal expectation statements
correspond exactly to the types of path events described
in Section 2. The four types of literal expectation state-
ments are task, notice, send, and recv.

A task statement matches a single task event and
any nested events in a path instance. The syntax is:

task(name) {statements}

Name is a string or regular expression to match the task
event’s name. The optional statements block contains
zero or more statements to match recursively against the
task event’s subtasks, notices, and messages.

A notice statement matches a single notice event.
Notice statements take a string or regular expression
to match against the text of the notice event.

Send and recv statements match the endpoints of
a single message event. Both statements take an iden-
tifier indicating which thread pattern or which node the
message is going to or arriving from.

Variant statements: Variant expectation components
specify a fragment that can match zero or more actual
events in a path instance. The five types of variant state-
ments are repeat, maybe, xor, any, and include.

A repeat statement indicates that a given block of
code will be repeated n times, for n in a given range. The
maybe statement is a shortcut for repeat between
0 and 1. The syntax of repeat and maybe is:

repeat between low and high { statements }
maybe { statements }

An xor statement indicates that exactly one of the
stated branches will occur. The syntax of xor is:

xor {
branch: statements
branch: statements
... (any number of branch statements)

}

An any statement matches zero or more path events
of any type. An any statement is equivalent to “.*”
in a regular expression, allowing an expectation writer
to avoid explicitly matching a sequence of uninteresting
events.

An include statement includes a fragment expecta-
tion inline as a macro expansion. The include state-
ment improves readability and reduces the need to copy
and paste code.

Futures: Some systems, particularly event-handling
systems, can allow the order and number of events to
vary from one path instance to the next. Pip accommo-
dates this fact using future statements and optional
done statements. The syntax for future and done
statements is:

future [name] {statements}
done(name);

A future statement indicates that the associated
block of statements will match contiguously and in order
at or after the current point in the path instance. Loosely,
a future states that something will happen either now or
later. Futures may be nested: when one future encloses
another, it means that the outer one must match before
the inner one. Futures may also be nested in (or may in-
clude) variant statements. Futures are useful for impos-
ing partial ordering of events, including asynchronous
events. Specifying several futures in a row indicates a
set of events that may finish in any order. The recognizer
in Figure 3 uses futures to recognize a 2-of-3 quorum
in FAB: two peers must respond immediately, while the
third may reply at any later time.

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association120

www.manaraa.com

A done statement indicates that events described by
a given future statement (identified by its name) must
match prior to the point of the done statement. All fu-
tures must match by the end of the path instance, with
or without a done statement, or else the recognizer does
not match the path instance.

Limits: Programmers can express upper and lower
limits on the resources that any task, message, or path
can consume. Pip defines several metrics, including real
time, CPU time, number of context switches, and mes-
sage size and latency (the only metrics that apply to mes-
sages). A limit on the CPU time of a path is evaluated
against the sum of the CPU times of all the tasks on that
path. A limit on the real time of a path is evaluated based
on the time between the first and last events on the path.

Recognizer sets: One recognizer may be defined in
terms of other recognizers. For example, recognizer
C may be defined as matching any path instance that
matches A and does not match B, or the set difference
A − B.

3.3.2 Aggregates
Recognizers organize path instances into sets. Aggre-
gate expectations allow programmers to reason about the
properties of those sets. Pip defines functions that return
properties of sets, including:

• instances returns the number of instances
matched by a given recognizer.

• min, max, avg, and stddev return the minimum,
maximum, average, and standard deviation of the
path instances’ consumption of any resource.

Aggregate expectations are assertions defined in terms
of these functions. Pip supports common arithmetic and
comparative operators, as well as simple functions like
logarithms and exponents. For example:

assert(average(CPU TIME, ReadOperation) < 0.5s);

This statement is true if the average CPU time consumed
by a path instance matching the ReadOperation recog-
nizer is less than 0.5 seconds.

3.4 Avoiding over- and under-constraint
Expectations in Pip must avoid both over- and under-

constraint. An over-constrained recognizer may be too
strict and reject valid paths, while an under-constrained
recognizer may accept invalid paths. Pip provides variant
statements—repeats, xor, and futures—to allow the pro-
grammer to choose how specific to be in expressing ex-
pectations. Programmers should express how the system
should behave rather than how it does behave, drawing
upper and lower bounds and ordering constraints from
actual program design.

Execution order is particularly prone to under- and
over-constraint. For components that devote a thread to

each request, asynchronous behavior is rare, and pro-
grammers will rarely, if ever, need to use futures. For
event-based components, locks and communication or-
der may impose constraints on event order, but there
may be ambiguity. To deal with ambiguity, programmers
should describe asynchronous tasks as futures. In partic-
ular, periodic background events (e.g., a timer callback)
may require a future statement inside a repeat block, to
allow many occurrences (perhaps an unknown number)
at unknown times.

3.5 Implementation
The Pip trace checker operates as a nested loop: for

each path instance in the trace, check it against each rec-
ognizer in the supplied expectations file.

Pip stores each recognizer as a list of thread patterns.
Each thread pattern is a tree, with structure correspond-
ing to the nested blocks in the expectations file. Figure 5
shows a sample expectation and one matching path. This
example demonstrates why a greedy matching algorithm
is insufficient to check expectations: the greedy algo-
rithm would match Notice C too early and incorrectly
return a match failure. Any correct matching algorithm
must be able to check all possible sets of events that vari-
ants such as maybe and repeat can match.

Pip represents each path instance as a list of threads.
Each thread is a tree, with structure corresponding to
the hierarchy of tasks and subtasks. When checking a
recognizer against a given path instance, Pip tries each
thread in the path instance against each thread pattern in
the recognizer. The recognizer matches the path instance
if each path thread matches at least one thread pattern
and each thread pattern matches an appropriate number
of path threads.

Each type of expectation statement has a correspond-
ing check function that matches path instance events.
Each check function returns each possible number
of events it could match. Literal statements (task,
notice, send, and recv) match a single event, while
variant statements (repeat, xor, and any) can match
different numbers of events. For example, if two dif-
ferent branches of an xor statement could match, con-
suming either two or three events, check returns the
set [2, 3]. If a literal statement matches the current path
event, check returns [1], otherwise ∅. When a check
function for a variant statement returns [0], it can be sat-
isfied by matching zero events. A failure is indicated by
the empty set, ∅.

The possible-match sets returned by each expectation
statement form a search tree, with height equal to the
number of expectation statements and width dependent
on how many variant statements are present in the ex-
pectation. Pip uses a depth-first search to explore this
search tree, looking for a leaf node that reaches the end

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 121

www.manaraa.com

task(“A”) { <task name=“A”>
maybe { notice(“B”); } <notice name=“B” />
repeat between 1 and 2 { <notice name=“C” />

notice(/.*/); } </task>

notice(“C”); }

Figure 5: A sample fragment recognizer and a path that
matches it.

Figure 6: The search tree formed when matching the expecta-
tion and the path events in Figure 5.

of the expectation tree and the path tree at the same time.
That is, the match succeeds if, in any branch of the search
tree, the expectation matches all of the path events.

Figure 6 shows the possibilities searched when match-
ing the expectations and the path events in Figure 5. Each
node represents a check function call. Each node shows
the return value (true or false) of the recursive search call,
the expectation statement being matched, and the num-
ber(s) of events it can match. Leaves with no possible
matches are shown with a possible-match set of NULL
and a return value of false. A leaf with one or more pos-
sible matches might still return false, if any path events
were left unmatched.

3.5.1 Futures
Pip checks futures within the same framework. Each
check function takes an additional parameter contain-
ing a table of all currently available futures. Possible-
match sets contain <events matched, futures table> tu-
ples rather than just numbers of events that could be
matched. Most check calls do not affect the table of ac-
tive futures, simply returning the same value passed as a
parameter. Future.check inserts a new entry into the
futures table but does not attempt to match any events; it
returns a single tuple: <0 events, updated futures table>.
Done.check forces the named future to match imme-
diately and removes it from the futures table.

Each node in the search tree must try all futures in

future F1 { notice(“C”); } <task name=“A”>
task(“A”) { <notice name=“B” />

maybe { notice(“B”); } <notice name=“C” />
repeat between 1 and 2 { </task>

notice(/.*/); } }

Figure 7: The same path as in Figure 5, with a slightly modi-
fied recognizer to match it. Note that the notice("C") state-
ment has been moved into a future block.

Figure 8: The search tree formed when matching the expecta-
tion and the path events in Figure 7.

the table as well as the next expectation statement. If a
future matches, then that branch of the tree uses a new
futures table with that one future removed. A leaf of the
tree matches only if each expectation statement returns
success, all path events are consumed, and the futures
table is empty.

Figure 7 shows the same path instance as in Fig-
ure 5, with a different expectation to match it: the
notice("C") statement is now a future. Figure 8
shows the possibilities searched when matching the ex-
pectations and the path events in Figure 7. Lazy evalu-
ation again means that only a few nodes of the tree de-
picted in Figure 8 are actually expanded.

3.5.2 Performance
The time to load and check a path instance depends, of
course, on the complexity of the path instance and the
complexity of the recognizers Pip checks it against. On
a 1.6 GHz laptop running Linux 2.6.13 and MySQL 4.1,
a complex path instance containing 100 hosts and 1700
events takes about 12 ms to load and another 12 ms to
check against seven recognizers, two of which contain
futures. Thus, Pip can load and check about 40 complex
path instances, or as many as 3400 simple path instances,
per second on this hardware.

4 Annotations
Pip represents behavior as a list of path instances that

contain tasks, notices, and messages, as described in Sec-

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association122

www.manaraa.com

tion 2. These events are generated by source-code an-
notations. We chose annotations over other event and
tracing approaches for two reasons. First, it was expe-
dient. Our focus is expectations and how to generate,
check, and visualize them automatically. Second, most
other sources of events do not provide a path ID, making
them less detailed and less accurate than annotations. Pip
could easily be extended to incorporate any event source
that provides path IDs.

Pip provides a library, libannotate, that programmers
link into their applications. Programmers insert a modest
number of source code annotations indicating which path
is being handled at any given time, the beginning and end
of interesting tasks, the transmission and receipt of mes-
sages, and any logging events relevant to path structure.

The six main annotation calls are:

• annotate set path id(id): Indicate which path all
subsequent events belong to. An application must
set a path identifier before recording any other
events. Path identifiers must be unique across all
hosts and all time. Often, identifiers consist of the
host address where the path began, plus a local se-
quence number.

• annotate start task(name): Begin some process-
ing task, event handler, or subroutine. Annotation
overhead for a task is around 10 µs, and the gran-
ularity for most resource measurements is a sched-
uler time slice. Thus, annotations are most useful
for tasks that run for the length of a time slice or
longer.

• annotate end task(name): End the given process-
ing task.

• annotate send(id, size): Send a message with the
given identifier and size. Identifiers must be unique
across all hosts and all time. Often, identifiers con-
sist of the address of the sender, an indication of
the type of message, and a local sequence number.
Send events do not indicate the recipient address,
allowing logical messages, anycast messages, for-
warding, etc.

• annotate receive(id, size): Receive a message with
the given identifier and size. The identifier must
be the same as when the message was sent, usually
meaning that at least the sequence number must be
sent in the message.

• annotate notice(string): Record a log message.

Programs developed using a supported middleware
layer may require only a few annotations. For exam-
ple, we modified Mace [12], a high-level language for
building distributed systems, to insert five of the six types
of annotations automatically. Our modified mace adds
begin- and end-task annotations for each transition (i.e.,
event handler), message-send and message-receive anno-
tations for each network message and each timer, and set-

path-id annotations before beginning a task or delivering
a message. Only notices, which are optional and are the
simplest of the six annotations, are left to the program-
mer. The programmer may choose to add further mes-
sage, task, and path annotations beyond what our modi-
fied Mace generates.

Other middleware layers that handle event handling
and network communication could automate annotations
similarly. For example, we believe that SEDA [27] and
RPC platforms like CORBA could generate message and
task events and could propagate path IDs. Pinpoint [5]
shows that J2EE can generate network and task events.

4.1 Reconciliation
The Pip annotation library records events in local

trace files as the application runs. After the application
terminates, the Pip reconciler gathers the files to a cen-
tral location and loads them into a single database. The
reconciler must pair start- and end-task events to make
unified task events, and it must pair message-send and
message-receive events to make unified message events.

The reconciler detects two types of errors. First, it
detects incomplete (i.e., unpaired) tasks and messages.
Second, it detects reused message IDs. Both types of
errors can stem from annotation mistakes or from appli-
cation bugs. In our experience, these errors usually indi-
cate an annotation mistake, and they disappear entirely if
annotations are added automatically.

5 Results
We applied Pip to several distributed systems, includ-

ing FAB [25], SplitStream [4], Bullet [13, 15], and Ran-
Sub [14]. We found 18 bugs and fixed most of them.
Some of the bugs we found affected correctness—for
example, some bugs would result in SplitStream nodes
not receiving data. Other bugs were pure performance
improvements—we found places to improve read latency
in FAB by 15% to 50%. Finally, we found correctness
errors in SplitStream and RanSub that were masked at
the expense of performance. That is, mechanisms in-
tended to recover from node failures were instead recov-
ering from avoidable programming errors. Using Pip, we
discovered the underlying errors and eliminated the un-
necessary time the protocols were spending in recovery
code.

The bugs we found with Pip share two important char-
acteristics. First, they occurred in actual executions of
the systems under test. Pip can only check paths that are
used in a given execution. Thus, path coverage is an im-
portant, though orthogonal, consideration. Second, the
bugs manifested themselves through traced events. Pro-
gram annotations must be comprehensive enough and ex-
pectations must be specific enough to isolate unexpected
behavior. However, the bugs we found were not limited
to bugs we knew about. That is, most of the bugs we

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 123

www.manaraa.com

System
Lines
of code

Recognizers
(lines)

Lines of
annotations

Number
of hosts

Number
of events

Trace
duration

Reconciliation
time (sec)

Checking
time (sec)

Bugs
found

Bugs
fixed

FAB 124,025 17 (590) 28 4 88,054 4 sec 6 7 2 1
SplitStream 2,436 19 (983) 8 100 3,952,592 104 sec 1184 837 13 12
Bullet 2,447 1 (38) 23 100 863,197 71 sec 140 81 2 0
RanSub 1,699 7 (283) 32 100 312,994 602 sec 47 9 2 1

Table 2: System sizes, the effort required to check them, and the number of bugs found and fixed.

found were not visible when just running the applications
or casually examining their log files.

Table 2 shows the size of each system we tested, along
with how much programmer effort and CPU time it took
to apply Pip in each case. Bullet has fewer expectations
because we did not write validators for all types of Bullet
paths. SplitStream has many expectations because it is
inherently complex and because in some cases we wrote
both a validator and an overly general recognizer for the
same class of behavior (see Section 5.2). Over 90% of
the running time of reconciliation and checking is spent
in MySQL queries; a more lightweight solution for stor-
ing paths could yield dramatic speed improvements. In
addition to the manual annotations indicated in the table,
we added 55 annotation calls to the Mace compiler and
library and 19 to the FAB IDL compiler.

Reconciliation time is O(E lg p) for E events and p

path instances, as each event is stored in a database, in-
dexed by path ID. The number of high-level recognizer
checking operations is exactly rp for p path instances and
r recognizers. Neither stage’s running time is dependent
on the number of hosts or on the concurrency between
paths. The checking time for a path instance against a
recognizer is worst-case exponential in the length of the
recognizer, e.g., when a recognizer with pathologically
nested future and variant statements almost matches a
given path instance. In practice, we did not encounter
any recognizers that took more than linear time to check.

In the remainder of this section, we will describe our
experiences with each system, some sample bugs we
found, and lessons we learned.

5.1 FAB
A Federated Array of Bricks (FAB) [25] is a dis-

tributed block storage system built from commodity
Linux PCs. FAB replicates data using simple replica-
tion or erasure coding and uses majority voting protocols
to protect against node failures and network partitions.
FAB contains about 125,000 lines of C++ code and a few
thousand lines of Python. All of FAB’s network code is
automatically generated from IDL descriptions written
in Python. The C++ portions of FAB combine user-level
threading and event-handling techniques. A typical FAB
configuration includes four or more hosts, background
membership and consensus communication, and a mix
of concurrent read and write requests from one or more
clients.

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 10 100 1000 10000

C
D

F

End-to-end delay (ms)

Coordinator 1st
Coordinator 2nd
Coordinator 3rd

Figure 9: CDF of end-to-end latency in milliseconds for FAB
read operations. The left-most line shows the case where the
coordinator calls itself last. Note that the x axis is log-scaled to
show detail.

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 10 100

C
D

F

End-to-end delay (ms)

Coordinator 1st
Coordinator 2nd
Coordinator 3rd

Figure 10: CDF of end-to-end latency in milliseconds for FAB
read operations in a system with a high cache hit rate. The
left-most line shows the case where the coordinator calls itself
second. Note that the x axis is log-scaled to show detail.

We were not initially familiar with FAB, but we had
access to its source code, and one of its authors offered to
help us understand it. With just a few hours of effort, we
annotated FAB’s IDL compiler, and were able to get the
tasks and messages necessary to examine every protocol.

Figure 3 in Section 3.3 showed an expectation for the
FAB read protocol when the node coordinating the ac-
cess (the I/O coordinator) does not contain a replica of
the block requested. In this section, we focus on the case
where the coordinator does contain a replica. In addition
to the read and write protocols, we annotated and wrote
expectations for FAB’s implementation of Paxos [17]
and the Cristian-Schmuck membership protocol [6] but
did not find any bugs in either.

Bugs: When the FAB I/O coordinator contains a
replica of the block requested, the order of RPCs issued
affects performance. In FAB, an RPC issued by a node
to itself is handled synchronously. Originally, FAB is-
sued read or write RPCs to all replicas in an arbitrary
order. A recent optimization changed this code so that
the coordinator always issues the RPC to itself (if any)
last, allowing greater overlap of computation.

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association124

www.manaraa.com

FAB’s author sent us the unoptimized code without
describing the optimization to us, with the intention that
we use Pip to rediscover the same optimization. Figure 9
shows the performance of read operations when the coor-
dinator calls itself first, second, or last. When the block
is not in cache (all delay values about 10 ms), having
the coordinator issue an RPC to itself last is up to twice
as fast as either other order. Write performance shows a
similar, though less pronounced, difference.

We discovered this optimization using expectations
and the visualization GUI together. We wrote recogniz-
ers for the cases where the coordinator called itself first,
second, and third and then graphed several properties of
the three path sets against each other. The graph for end-
to-end delay showed a significant discrepancy between
the coordinator-last case and the other two cases.

Figure 10 shows the same measurements as Figure 9,
in a system with a higher cache hit rate. We noticed that
letting the coordinator call itself second resulted in a 15%
decrease in latency for reads of cached data by perform-
ing the usually unneeded third call after achieving a 2-of-
3 quorum and sending a response to the client. The FAB
authors were not aware of this difference.

Lessons: Bugs are best noticed by someone who
knows the system under test. We wrote expectations for
FAB that classified read and write operations as valid re-
gardless of the order of computation. We found it easy
to write recognizers for the actual behavior a system ex-
hibits, or even to generate them automatically, but only
someone familiar with the system can say whether such
recognizers constitute real expectations.

5.2 SplitStream
SplitStream [4] is a high-bandwidth content-

streaming system built upon the Scribe multicast
protocol [24] and the Pastry DHT [23]. SplitStream
sends content in parallel over a “forest” of 16 Scribe
trees. At any given time, SplitStream can accommodate
nodes joining or leaving, plus 16 concurrent multicast
trees. We chose to study SplitStream because it is a
complex protocol, we have an implementation in Mace,
and our implementation was exhibiting both perfor-
mance problems and structural bugs. Our SplitStream
tests included 100 hosts running under ModelNet [26]
for between two and five minutes.

Bugs: We found 13 bugs in SplitStream and fixed most
of them. Space does not allow descriptions of all 13
bugs. We found two of the bugs using the GUI and 11 of
the bugs by either using or writing expectations. Seven
bugs had gone unnoticed or uncorrected for ten months
or more, while the other six had been introduced recently
along with new features or as a side effect of porting
SplitStream from MACEDON to Mace. Four of the bugs
we found were due to an incorrect or incomplete under-

standing of the SplitStream protocol, and the other nine
were implementation errors. At least four of the bugs re-
sulted in inefficient (rather than incorrect) behavior. In
these cases, Pip enabled performance improvements by
uncovering bugs that might have gone undetected in a
simple check of correctness.

One bug in SplitStream occurred twice, with simi-
lar symptoms but two different causes. SplitStream al-
lows each node to have up to 18 children, but in some
cases was accepting as many as 25. We first discovered
this bug using the GUI: visualizations of multicast paths’
causal structure sometimes showed nodes with too many
children. The cause the first time was the use of global
and local variables with the same name; SplitStream was
passing the wrong variable to a call intended to offload
excess children. After fixing this bug, we wrote a valida-
tor to check the number of children, and it soon caught
more violations. The second cause was an unregistered
callback. SplitStream contains a function to accept or
reject new children, but the function was never called.

Lessons: Some bugs that look like structural bugs af-
fect only performance, not correctness. For example,
when a SplitStream node has too many children, the tree
still delivers data, but at lower speeds. The line between
structural bugs and performance bugs is not always clear.

The expectations checker can help find bugs in sev-
eral ways. First, if we have an expectation we know to be
correct, the checker can flag paths that contain incorrect
behavior. Second, we can generate recognizers automati-
cally to match existing paths. In this case, the recognizer
is an external description of actual behavior rather than
expected behavior. The recognizer is often more concise
and readable than any other summary of system behavior,
and bugs can be obvious just from reading it. Finally, we
can write an overly general recognizer that matches all
multicast paths and a stricter, validating recognizer that
matches only correct multicast paths. Then we can study
incorrect multicast paths—those matched by the first but
not the second—without attempting to write validators
for other types of paths in the system.

5.3 Bullet
Bullet [13, 15] is a third-generation content-

distribution mesh. Unlike overlay multicast protocols,
Bullet forms a mesh by letting each downloading node
choose several peers, which it will send data to and re-
ceive data from. Peers send each other lists of which
blocks they have already received. One node can decide
to send (push) a list of available blocks to its peers, or the
second can request (pull) the list. Lists are transmitted as
deltas containing only changes since the last transmis-
sion between the given pair of nodes.

Bugs: We found two bugs in Bullet, both of which are
inefficiencies rather than correctness problems. First, a

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 125

www.manaraa.com

given node A sometimes notifies node B of an avail-
able block N several times. These extra notifications
are unexpected behavior. We found these extra notifi-
cations using the reconciler rather than the expectations
checker. We set each message ID as <sender, recipi-
ent, block number> instead of using sequence numbers.
Thus, whenever a block notification is re-sent, the recon-
ciler generates a “reused message ID” error.

The second bug is that each node tells each of its peers
about every available block, even blocks that the peers
have already retrieved. This bug is actually expected be-
havior, but in writing expectations for Pip we realized it
was inefficient.

Lessons: We were interested in how notifications
about each block propagate through the mesh. Because
some notifications are pulls caused by timers, the prop-
agation path is not causal. Thus, we had to write ad-
ditional annotations for virtual paths in addition to the
causal paths that Mace annotated automatically.

Pip can find application errors using the reconciler,
not just using the path checker or the GUI. It would have
been easy to write expectations asserting that no node
learns about the same block from the same peer twice,
but it was not necessary because the reconciler flagged
such repeated notifications as reused message IDs.

5.4 RanSub
RanSub [14] is a building block for higher-level pro-

tocols. It constructs a tree and tells each node in the tree
about a uniformly random subset of the other nodes in
the tree. RanSub periodically performs two phases of
communication: distribute and collect. In the distribute
phase, each node starting with the root sends a random
subset to each of its children. In the collect phase, each
node starting with the leaves sends a summary of its state
to its parent. Interior nodes send a summary message
only after receiving a message from all children. Our
RanSub tests involved 100 hosts and ran for 5 minutes.

Because RanSub is written in Mace, we were able to
generate all needed annotations automatically.

Bugs: We found two bugs in RanSub and fixed one of
them. First, each interior node should only send a sum-
mary message to its parent after hearing from all of its
children. Instead, the first time the collect phase ran,
each interior node sent a summary message after hearing
from one child. We found this bug by writing an expecta-
tion for the collect-and-distribute path; the first round of
communication did not match. The root cause was that
interior nodes had some state variables that did not get
initialized until after the first communication round. We
fixed this bug.

The second bug we found in RanSub is a performance
bug. The end-to-end latency for collect-and-distribute

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 100 200 300 400 500 600

T
as

k
du

ra
tio

n
(m

s)

Task start time (s)

Figure 11: Duration for the deliverGossip task as a func-
tion of time.

paths starts out at about 40 ms and degrades gradually
to about 50 ms after running for three minutes. We
traced the bottleneck to a task called deliverGossip
that initially takes 0 ms to run and degrades gradually to
about 11 ms. We found this bug using the GUI. First, we
examined the end-to-end latency as a function of time.
Seeing an error there, we checked each class of tasks in
turn until we found the gossip task responsible for the
degradation. Figure 11 shows the time consumed by
the gossip task as a function of time. The reason for
deliverGossip degrading over time is unclear but
might be that deliverGossip logs a list of all gos-
sip previously received.

6 Related work
Pip is one of many approaches to finding structure

and performance bugs in distributed systems. Below,
we highlight two categories of debugging approaches:
path analysis tools and automated expectation checking.
Pip is the first to combine the two approaches. Finally,
we discuss the relationship between Pip and high-level
languages for specifying and developing distributed sys-
tems.

6.1 Path analysis tools
Several previous systems have modeled the behavior

of distributed systems as a collection of causal paths.
This approach is particularly appropriate for systems
driven by user requests, as it captures the delays and re-
source consumption associated with each request. Path-
based debugging can enable programmers to find aber-
rant paths and to optimize both throughput and end-to-
end latency.

Project 5 [1] infers causal paths from black-box net-
work traces. By doing so, it can help debug systems with
unavailable source code. Deploying black-box debug-
ging, at least in theory, requires less effort than annotat-
ing source code. However, Project 5 can only report what
it can infer. Its granularity is limited to host-to-host com-
munication, and it often reconstructs paths incorrectly. In
particular, interesting paths, including infrequent paths
or paths with long or variable delays, may be lost.

Magpie [2] reconstructs causal paths based on OS-
level event tracing. Like Project 5, Magpie can oper-

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association126

www.manaraa.com

ate without access to source code. However, Magpie can
construct paths with much higher accuracy than Project 5
can, because OS-level tracing provides more informa-
tion than network tracing alone. Magpie clusters causal
paths using a string-edit-distance algorithm and identi-
fies outliers—that is, small clusters.

Like Pip, Pinpoint [5] constructs causal paths by an-
notating applications or platforms to generate events and
maintain a unique path identifier per incoming request.
Like Pip and Magpie, Pinpoint can construct paths with
a high degree of confidence because it does not rely on
inference. Like Magpie but unlike Pip, Pinpoint assumes
that anomalies indicate bugs. Pinpoint uses a probabilis-
tic, context-free grammar to detect anomalies on a per-
event basis rather than considering whole paths. Doing
so significantly underconstrains path checking, which,
as the authors point out, may cause Pinpoint to validate
some paths with bugs.

All three of these existing causal path debugging sys-
tems rely on statistical inference to find unusual behavior
and assume that unusual behavior indicates bugs. Do-
ing so has two drawbacks. First, inference requires large
traces with many path instances. Second, these systems
can all miss bugs in common paths or incorrectly identify
rare but valid paths.

The accuracy and granularity of existing causal path
debugging tools are limited by what information they can
get from traces of unmodified applications. In practice,
these systems entail a form of gray-box debugging, lever-
aging prior algorithmic knowledge, observations, and in-
ferences to learn about the internals of an unmodifiable
distributed system. In contrast, Pip assumes the ability
to modify the source for at least parts of a distributed
system, and it provides richer capabilities for exploring
systems without prior knowledge and for automatically
checking systems against high-level expectations.

6.2 Automated expectation checking
Several existing systems support expressing and

checking expectations about structure or performance.
Some of the systems operate on traces, others on spec-
ifications, and still others on source code. Some support
checking performance, others structure, and others both.
Some, but not all, support distributed systems.

PSpec [21] allows programmers to write assertions
about the performance of systems. PSpec gathers infor-
mation from application logs and runs after the applica-
tion has finished running. The assertions in PSpec all
pertain to the performance or timing of intervals, where
an interval is defined by two events (a start and an end)
in the log. PSpec has no support for causal paths or for
application structure in general.

Meta-level compilation (MC) [8] checks source code
for static bugs using a compiler extended with system-

specific rules. MC checks all code paths exhaustively
but is limited to single-node bugs that do not depend
on dynamic state. MC works well for finding the root
causes of bugs directly, while Pip detects symptoms and
highlights code components that might be at fault. MC
focuses on individual incorrect statements, while Pip fo-
cuses on the correctness of causal paths, often spanning
multiple nodes. MC finds many false positives and bugs
with no effect, while Pip is limited to actual bugs present
in a given execution of the application.

Paradyn [19] is a performance measurement tool for
complex parallel and distributed software. The Para-
dyn Configuration Language (PCL) allows programmers
to describe expected characteristics of applications and
platforms, and in particular to describe metrics; PCL
seems somewhat analogous to Pip’s expectation lan-
guage. However, PCL cannot express the causal path
structure of threads, tasks and messages in a program,
nor does Paradyn reveal the program’s structure.

6.3 Domain-specific languages
Developers of distributed systems have a wide variety

of specification and implementation languages to choose
from. Languages like Estelle [11], π-calculus [20], join-
calculus [9], and P2 [18] embrace a formal, declarative
approach. Erlang [3] and Mace [12] use an imperative
approach, with libraries and language constructs special-
ized for concurrency and communication. Finally, many
programmers still use traditional, general-purpose lan-
guages like Java and C++.

Pip is intended primarily for developers using im-
perative languages, including both general-purpose lan-
guages and domain-specific languages for building dis-
tributed systems. Pip provides language bindings for
Java, C, C++, and Mace. While programmers using
declarative languages can verify the correctness of their
programs through static analysis, Pip is still valuable for
monitoring and checking dynamic properties of a pro-
gram, such as latency, throughput, concurrency, and node
failure.

7 Conclusions
Pip helps programmers find bugs in distributed sys-

tems by comparing actual system behavior to the pro-
grammer’s expectations about that behavior. Pip pro-
vides visualization of expected and actual behavior, al-
lowing programmers to examine behavior that violates
their expressed expectations, and to search interactively
for additional unexpected behavior. The same techniques
can help programmers learn about an unfamiliar system
or monitor a deployed system.

Pip can often generate any needed annotations auto-
matically, for applications constructed using a supported
middleware layer. Pip can also generate initial expec-
tations automatically. These generated expectations are

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 127

www.manaraa.com

often the most readable description of system behavior,
and bugs can be obvious just from reading them.

We applied Pip to a variety of distributed systems,
large and small, and found bugs in each system.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,

and A. Muthitacharoen. Performance debugging for dis-
tributed systems of black boxes. In Proc. SOSP, Bolton
Landing, NY, Oct. 2003.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for request extraction and workload modeling. In
Proc. OSDI, San Francisco, CA, Dec. 2004.

[3] R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren,
S.-O. Nyström, M. Pettersson, and R. Virding. Core Er-
lang 1.0 language specification. Technical Report 030,
Uppsala University, Nov. 2000.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream: High-
bandwidth multicast in cooperative environments. In
Proc. SOSP, Bolton Landing, NY, Oct. 2003.

[5] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson,
A. Fox, and E. Brewer. Path-based failure and evolution
management. In Proc. NSDI, San Francisco, CA, April
2004.

[6] F. Cristian and F. Schmuck. Agreeing on processor group
membership in timed asynchronous distributed systems.
Report CSE95-428, UC San Diego, 1995.

[7] C. Dickens. Great Expectations. Chapman & Hall, Lon-
don, 1861.

[8] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In Proc. OSDI, San Diego, CA, Dec.
2000.

[9] C. Fournet and G. Gonthier. The join calculus: a language
for distributed mobile programming. In Proc. APPSEM,
Caminha, Portugal, 2000.

[10] P. Godefroid. Software model checking: the VeriSoft ap-
proach. Formal Methods in System Design, 26(2):77–101,
Mar. 2005.

[11] ISO 9074. Estelle: A formal description technique based
on an extended state transition model. 1987.

[12] Mace. http://mace.ucsd.edu, 2005.
[13] D. Kostić, R. Braud, C. Killian, E. Vandekieft, J. W. An-

derson, A. C. Snoeren, and A. Vahdat. Maintaining high
bandwidth under dynamic network conditions. In Proc.
USENIX 2005, Anaheim, CA, Apr. 2005.

[14] D. Kostić, A. Rodriguez, J. Albrecht, A. Bhirud, and
A. Vahdat. Using random subsets to build scalable net-
work services. In Proc. USITS, Seattle, WA, Mar. 2003.

[15] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bul-
let: High bandwidth data dissemination using an overlay
mesh. In Proc. SOSP, Bolton Landing, NY, Oct. 2003.

[16] L. Lamport. The temporal logic of actions. ACM
TOPLAS, 16(3):872–923, May 1994.

[17] L. Lamport. The part-time parliament. ACM TOCS,
16(2):133–169, May 1998.

[18] B. T. Loo, T. Condie, J. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative over-

lays. In Proc. SOSP, Brighton, UK, Oct. 2005.
[19] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.

Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kun-
chithapadam, and T. Newhall. The paradyn parallel per-
formance measurement tool. IEEE Computer, 28(11):37–
46, Nov. 1995.

[20] R. Milner. The polyadic π-calculus: A tutorial. Technical
Report ECS-LFCS-91-180, University of Edinburgh, Oct.
1991.

[21] S. E. Perl and W. E. Weihl. Performance assertion check-
ing. In Proc. SOSP, Asheville, NC, Dec. 1993.

[22] A. Rodriguez, C. Killian, S. Bhat, D. Kostić, and A. Vah-
dat. MACEDON: Methodology for Automatically Cre-
ating, Evaluating, and Designing Overlay Networks. In
Proc. NSDI, San Francisco, CA, April 2004.

[23] A. Rowstron and P. Druschel. Pastry: Scalable, Dis-
tributed Object Location and Routing for Large-scale
Peer-to-Peer Systems. In Proc. Middleware’2001, Hei-
delberg, Germany, Nov. 2001.

[24] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Dr-
uschel. SCRIBE: The Design of a Large-scale Event No-
tification Infrastructure. In 3rd Intl. Workshop on Net-
worked Group Communication, London, UK, Nov. 2001.

[25] Y. Saito, S. Frolund, A. Veitch, A. Merchant, and
S. Spence. FAB: Building distributed enterprise disk ar-
rays from commodity components. In Proc. ASPLOS,
Boston, MA, 2004.

[26] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker. Scalability and Accuracy in a
Large-Scale Network Emulator. In Proc. OSDI, Boston,
MA, 2002.

[27] M. Welsh, D. Culler, and E. Brewer. SEDA: an architec-
ture for well-conditioned, scalable internet services. In
Proc. SOSP, Banff, Canada, 2001.

Notes

1Pip is the main character in Great Expectations [7].
2Source code and screenshots for Pip are available at

http://issg.cs.duke.edu/pip.
3Mace is an ongoing redesign of the MACEDON [22]

language for building distributed systems.

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association128

